<video id="zjj55"><delect id="zjj55"></delect></video>

<big id="zjj55"><listing id="zjj55"><del id="zjj55"></del></listing></big>

<menuitem id="zjj55"><delect id="zjj55"><pre id="zjj55"></pre></delect></menuitem>

<output id="zjj55"></output>
<video id="zjj55"></video>

<menuitem id="zjj55"></menuitem>

    <video id="zjj55"><listing id="zjj55"></listing></video>

    <menuitem id="zjj55"></menuitem>
    <output id="zjj55"><delect id="zjj55"><pre id="zjj55"></pre></delect></output>

    <menuitem id="zjj55"></menuitem>
    <menuitem id="zjj55"></menuitem>

        <big id="zjj55"></big>
          1. 移動端
            訪問手機端
            官微
            訪問官微

            搜索
            取消
            溫馨提示:
            敬愛的用戶,您的瀏覽器版本過低,會導致頁面瀏覽異常,建議您升級瀏覽器版本或更換其他瀏覽器打開。

            智能投顧十大趣談!基金從業者該不該恐慌?

            來源:36氪 2017-05-27 10:21:45 智能投顧 金融科技
                 來源:36氪     2017-05-27 10:21:45

            核心提示一篇不燒腦就能讓你看懂智能投顧的科普趣文。

            智能投顧十大趣談!基金從業者該不該恐慌?

              大家好,我是松禾遠望基金合伙人田鴻飛。前一段就智能投顧話題,我給一些二級市場的基金從業者做了一次內部講座。在這里以一個輕松方式分享給大家。

              趣談一:銀行和基金從業人員,最恐慌的是未來飯碗會否不保

              波士頓是美國資管行業的重鎮。2016年我在波士頓和做基金管理的校友交流中發現,受到金融科技發展的影響,他們對未來有些悲觀,認為飯碗在未來某一天也許就沒了。很多在銀行工作的朋友同樣焦慮。

              我的觀點,大量易標準化、重復性、沒技術含量、不具獨創性的工作肯定會被裁掉。從基金行業來說,首先后臺最容易被替代,因為都是成本。清算、交收、估值類工作,以前需要多人忙碌,現在很容易被一套軟件系統就替代了,都用不上人工智能,而且準確性更高。

              目前還有公司在開發銀行間的區塊鏈對賬系統,以后也不用每天晚上人工互檢對賬了。因為區塊鏈本身是一個瞬間同步的賬目,每個人的賬本會實時共享,同時又能做到安全透明、不可篡改,所以這些后臺工作會最先被替代。

              再說前臺,智能投顧的自動化交易未來會讓大多數交易員變得毫無價值。以量化投資來說,未來做多因子模型的投資經理就很容易被干掉。因為由AI來做優化,絕對比人做優化要強很多。對于前臺的其他工作,現在已經出現了機器人客服,像信息簡報、研究報告類也都可以由人工智能自動摘取生成(當然我認為獨創性研究是很難被替代的)。

              但國內的二級市場與國外有很多不同,很多散戶需要心靈按摩。這些情感交流的工作是否就不會被取代呢?我覺得也不一定。因為現在00后一代,他們在行為習慣上,其實更愿意和機器人打交道,而不是和人打交道。這正是2015年BlackRock收購Future Advisor的重要原因,他們發現年輕人更需要便利、低門檻和互聯網化的理財方式。

              拿保險舉個例子。賣保險顯然要比賣理財更需要情感溝通,但智能保顧也正在興起。所以對于資管而言,我認為情感因素并沒那么重要,未來會有越來越多的人喜歡并習慣面對機器。

              趣談二:Fintech機會正在向傳統金融背景人士傾斜

              我們看過很多Fintech領域的創業項目,發現一個有趣的現象,那就是互聯網出身的人和有銀行從業背景的人,往那兒一坐風格會涇渭分明。互聯網人盯的就是KPI和增長,對風控、對法規毫無概念;金融行業出身的人主要談的就是風險控制,要規范企業的發展。

              從去年開始互聯網金融發展的風向發生了巨變,以往野蠻生長的環境不復存在。美國貨幣監理署(OCC)正在考慮給Fintech公司發全國性銀行牌照,國內也大幅加強了合規的嚴格管理。這些變化,都促使互聯網金融開始向更注重規范、更注重風控的傳統金融背景人士傾斜。

              還有非常重要的一點是,作為傳統金融行業的人,他們坐擁非常多的資源,當意識到互聯網金融的風向時,轉舵起來還是很容易的。正如一個在銀行的朋友介紹,自銀行推出現金貸業務后,僅用幾個月時間,就快速超過了互聯網人已用兩三年發展起來的規模。

              在美國也是如此,一旦具備傳統投資優勢的金融機構進入智能投顧領域,同樣會迅速搶占市場份額。正如Vanguard和Charles Schwab自2015年推出智能投顧產品后,相對應的資產管理規模(AUM)已遙遙超越了Betterment和Wealthfront。

            智能投顧十大趣談!基金從業者該不該恐慌?

              趣談三:中國為什么比美國更適合發展Fintech?

              英國的《經濟學人》雜志在年初的一篇文章中提到,正是得益先進的技術、落后的銀行體系和爆發式的財富增長,讓中國成為了全球金融科技的領導者。去年10月我參加了著名的Money20/20大會,對此感受頗深,現場幾乎2/3的廣告牌都是中國企業。這些國內的Fintech企業,不論在模式創新還是技術創新上,都已遠遠超過了美國。

              中國為什么比美國更適合發展Fintech?我的看法是:

              - 國內對金融科技的監管環境還是很寬松的,至少前幾年非常寬松。在美國的Fintech企業,絕不敢像國內這么“膽大妄為”;

              - 國內即使有人冒進違規了,處罰起來并不嚴厲,犯錯成本較低;

              - 國內還沒有成熟的隱私保護法,數據的可獲得性很高,各種來源的數據都使用;

              - 中國沒有美國那么多年的積累,也就沒有牽絆。上來就可以用最好的技術、最簡單的方法直達目的。

              趣談四:智能投顧在美國發展遭遇了瓶頸

              過去我們學習金融時,知道平均成本法(Dollar Cost Averaging),也就是要養成固定去投資的習慣,投資收益是最高的。這是一個基礎理論,但大家平時生活中很難做到這么有紀律性,尤其對于剛入職場的小白而言。

              現在美國銀行和智能投顧公司最讓人羨慕的是完全能做到自動理財。一般美國都是雙周發薪,通過direct deposit功能,工資直接進入銀行賬戶。銀行完成扣款后,會自動劃分到智能投顧公司的賬戶。由投顧公司做一個再平衡,就幫用戶理財投資了。對用戶來言,每月只需留一些錢還信用卡就行了。智能投顧在切實解決用戶體驗問題后,讓用戶量和AUM資產管理規模上來的特別快。

              不過現下智能投顧在美國的發展仍處于瓶頸之中。主要是行業領頭羊Betterment、Wealthfront處于了一個停滯期。很多潛在投資者對他們的擔心是,Robot-advisors這件事,并未改變背后的商業邏輯,也就是配置資產和金融服務的屬性沒變。但相比于傳統機構,他們投入市場和運營的花費卻很大,這是典型的互聯網人發展模式,先砸錢把用戶量做起來。但這也讓吸收資金的成本變得非常高。那你的競爭優勢到底是什么?估值還這么高,是不是市場吹起的泡泡?這遭遇了很多投資者的懷疑。

            智能投顧十大趣談!基金從業者該不該恐慌?

              趣談五:智能投顧與量化投資的區別是什么?

              相比同樣采用計算機與數學模型做投資決策的量化投資,智能投顧最顯著的區別是什么?簡單來說一個是自動根據市場變化做決策,一個還得靠人來調策略。后者說的正是量化投資,一般是先找出一個模型策略,這個策略不會自動變化。所以一旦當市場環境變化的時候,這個量化策略就失效了,必須由投資經理根據市場情況來調整策略。

              對于應用機器學習的智能投顧,則會根據市場的變化不斷的產生新策略,也就是應對瞬息萬變的市場變化,一切都是在后臺自動完成的,并不需要人工干預。因為機器學習有回饋循環(Feedback Loop),從市場-策略-結果再到市場的不斷反復循環,會自動根據資產的價格、風險的變動不斷調整。

              相比量化或人工投資,人工智能處理信息還有一個最大優勢,那就是可以把自有證券市場以來的全部數據都錄入做分析。特別現在有了GPU、TPU等專門的處理器,依靠強大的運算能力,可以瞬間得到想要的相關性分析,這滿足了金融領域對數據的實時性要求。

              趣談六:智能投顧是不是在吹牛,投資業績到底如何?

              剛才談到利用機器學習和深度學習的方法,智能投顧可以把價格變動的趨勢和模式找出來,做到快速反應、快速交易。相信很多人一定好奇,智能投顧相對于量化投資的業績到底如何。

              我們知道最近幾年,面對國際金融市場的大幅波動,量化投資的業績是遠遠好于很多主動型管理基金。在今年3月傳出的BlackRock重組計劃中,就裁掉了很多主動型基金部門的員工,將很大一部分的資產將轉化為量化管理產品。

              而根據對沖數據服務公司Eurekahedge的AI/機器學習對沖基金指數顯示,自從2010年以后,其中23支應用智能投顧的對沖基金,在業績表現方面是要優于量化對沖基金的(如下圖)。

            智能投顧十大趣談!基金從業者該不該恐慌?

              趣談七:人工智能為什么直到今天才取得突破?

              我經常開玩笑說,人工智能技術的發展有些復古。因為現在深度學習依托的神經網絡系統理論,最早可以追溯到上世紀40、50年代,只不過到現在發展為了多層神經網絡技術。從最早的LISP語言、專家系統到神經網絡和機器學習,人工智能過去幾十年的發展一直都非常低迷。這讓李開復老師那一代從業者很是受傷,因為把事業放在上面20年沒有進展。那為什么來到今天就突破了呢?

              一方面是已提到的多層神經網絡(MLP)取得了小突破,特別其中深度學習(Deep Learning)的出現,應用更多層網路,能學習更抽象理念,并融入自我學習中,加速收斂。以前努力了半天,識別能力只能提升百分之幾,現在一下提升了百分之二十幾,這讓AI取得了突破式發展。從智能投顧角度,深度學習既然極大提高了圖像識別精度,同理也可以提高識別股票價格變化的模式,雖然這并不意味可以準確預測股價。

              另外更關鍵的,我認為是數據量的豐富。2010年我回硅谷時,第一次聽谷歌的朋友說他們的AI取得突破,能在YouTube上把貓給認出來了。很重要的原因是在YouTube上有了大量的視頻和圖片數據之后。對此我認為,人工智能發展起來的關鍵是有了大量的數據,算法提升其實是很有限的。甚至可以說人工智能發展80%歸于數據的豐富,可能只有20%歸于算法的提升。特別在金融行業,數據都是非常容易標簽化的,完美性這么好,所以人工智能最先顛覆的就是金融領域。

              趣談八:深度學習最大的問題是黑箱

              對于深度學習而言,人才分幾個檔次。第一級是開宗立派的人物,也就是發明CNN(卷積神經網絡)、DNN(深度神經網絡)、RNN(循環神經網絡)這些流派的宗師級人物。還有一類人才,是真正能夠把參數調好的人,也非常稀缺。比如對于多層神經網絡,是設置10層、5層還是7層效果最好?每層都有很多參數。還有給入多大的數據量才會產生理想結果?因為到一定程度,你會發現輸入越多數量,結果反而可能會變壞。

              這是一個經驗值,甚至沒有規律,所以業內開玩笑叫做煉金術。把一堆東西放一起,不知好壞,天天試,跟做化學實驗室一樣,還沒有固定的化學方程式。大部分在美國讀PhD的中國留學生是負責調參數的。但調參數能調好的人,在AI界也算是鳳毛麟角,一年的package下來也有100~200萬美金。要知道不僅在中國,在全球,人工智能創業公司最大的挑戰都不是錢,而是雇不到人。

              但這里就產生了一個問題。比如輸入大量數據后,經過10層神經網絡篩選得出一個結論,可你是沒法回溯怎么得出這個結論的。所以深度學習最大的問題是黑箱。如果想避免一個錯誤,要修改參數,那所有訓練又得重新來一遍。正因為這個問題,自動駕駛一旦出現車禍,很難向美國交通局去解釋。在美國發信用卡的領域也存在一樣的問題。拒絕給一個客戶發信用卡,你得告知是基于什么規則,不然人家可能會告你,但深度學習沒辦法解釋這件事。所以最近的一些算法已經做出了一些優化。

            智能投顧十大趣談!基金從業者該不該恐慌?

              趣談九:國內智能投顧發展境況如何?

              很多人說中國資產類型太單一,ETF數量不夠,很難滿足智能投顧的資產配置需求。我們之前看了有20多家智能投顧公司,實際發現他們的配置還是很豐富的。簡直可以說是五花八門,有的配P2P資產、有的配小貸,還有人拆信托、拆私募,做MOM、FOF模式的也有。大家都打著智能投顧的旗號,但剝開皮看都不一樣,很多時候不知后面賣的什么東西。這也正是國家在加強機器人投顧管理的原因。

              還有一個重要問題是,中國基本沒有買方投顧,大家都在掙后端銷售傭金,更像賣方雇傭的銷售。所以對國內的智能投顧而言,本來是個投資顧問的事兒,卻在做銷售的活兒。這混淆了投資咨詢與產品銷售之間的界限。那么用戶如何來評判你投資建議的公立性?這讓消費者很難信智能投顧這件事。這正是國家正加緊合規的理論依據。

              另外國內智能投顧最大的問題還在于金融產品代銷資質。所以在中國做智能投顧,真正合規的只能是由大的金控公司來做,他們擁有所有的銷售牌照和資格,才能給用戶去做豐富的資產配置。不然你都沒有太多可配置的資產,跟真正意義上的智能投顧有很大差距。而對創業公司來言,每個牌照的價格都非常貴,還要搞定各種通道、支付,真的玩不起。

              趣談十:智能投顧悖論

              我們知道股票交易有賠有賺,如果大家都買了同一套軟件,可以預測該買哪支股票,那么市場上誰賣呢?在一個下跌市場當中,一旦像Vanguard、BlackRock這樣的行業巨頭,用機器人投顧做出拋售指令,大家都在拋盤,而沒人買盤,單邊行情會不會導致市場崩潰?其實我認為這樣的問題可以避免。因為真正的智能投顧是能根據每個人的風險偏好不同,做出不同的投資組合和交易選擇,這樣才能讓市場有賠有賺的運行起來。

              最后說一個有趣的話題,那就是人對機器的容忍度,要遠遠小于人對自己的容忍度。最簡單的無人車犯錯,大家都覺得不可容忍。但人天天都在犯錯,卻很容易獲得諒解。這是一個客觀問題?;氐街悄芡额欉@個話題,面對中國股市普遍難以盈利的行情,你說智能投顧在一個下跌市場當中,如何安撫用戶虧損的情緒呢?其實很簡單。周圍10個人如果你是虧的最多的,人家都賺,你肯定不開心。但如果機器用數據告訴你,相比量化投資和你周圍的人,你的回撤是最少的,那你肯定就不會太苛責機器了。

            人妻精品一区二区三区_好紧好湿好硬国产在线视频_亚洲精品无码mv在线观看_国内激情精品久久久

            <video id="zjj55"><delect id="zjj55"></delect></video>

            <big id="zjj55"><listing id="zjj55"><del id="zjj55"></del></listing></big>

            <menuitem id="zjj55"><delect id="zjj55"><pre id="zjj55"></pre></delect></menuitem>

            <output id="zjj55"></output>
            <video id="zjj55"></video>

            <menuitem id="zjj55"></menuitem>

              <video id="zjj55"><listing id="zjj55"></listing></video>

              <menuitem id="zjj55"></menuitem>
              <output id="zjj55"><delect id="zjj55"><pre id="zjj55"></pre></delect></output>

              <menuitem id="zjj55"></menuitem>
              <menuitem id="zjj55"></menuitem>

                  <big id="zjj55"></big>

                      責任編輯:Rachel

                      免責聲明:

                      中國電子銀行網發布的專欄、投稿以及征文相關文章,其文字、圖片、視頻均來源于作者投稿或轉載自相關作品方;如涉及未經許可使用作品的問題,請您優先聯系我們(聯系郵箱:cebnet@cfca.com.cn,電話:400-880-9888),我們會第一時間核實,謝謝配合。

                      為你推薦

                      猜你喜歡

                      收藏成功

                      確定